منابع مشابه
A Parameter-free Hedging Algorithm
We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large. Previous algorithms for learning in this framework have a tunable learning rate parameter, and a barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly...
متن کاملA Parameter-free Affinity Based Clustering
Several methods have been proposed to estimate the number of clusters in a dataset; the basic ideal behind all of them has been to study an index that measures inter-cluster separation and intra-cluster cohesion over a range of cluster numbers and report the number which gives an optimum value of the index. In this paper we propose a simple, parameter free approach that is like human cognition ...
متن کاملZOBOV: a parameter-free void-finding algorithm
ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the ZOBOV algorithm, a...
متن کاملFPBIL: A Parameter-free Evolutionary Algorithm
The purpose of this chapter is to describe a new algorithm named FPBIL (parameter-Free PBIL), an evolution of PBIL (Population-Based Incremental Learning). FPBIL, as well as PBIL (Baluja, 1994), Genetic Algorithms (GAs) (Holland, 1992) and others are general purpose population-based evolutionary algorithms. The success of GAs is unquestionable (Goldberg, 1989). Despite that, PBIL has shown to b...
متن کاملThe X-Alter Algorithm: A Parameter-Free Method of Unsupervised Clustering
Using quantization techniques, Laloë (2010) de ned a new clustering algorithm called Alter. This L-based algorithm is proved to be convergent, but su ers two major aws. The number of clusters K has to be supplied by the user and the computational cost is high. In this article, we adapt the X-means algorithm [Pelleg and Moore, 2000] to solve both problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017913574